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Abstract. The paper deals with problems of free vibrations of an ideal incompressible fluid in coaxial 

shells of revolution. It is assumed that the motion of the fluid is irrotational that allows us to introduce 

a velocity potential. In these suppositions the potential is satisfied to the Laplace equation. Boundary 

conditions are formulated on wetted surfaces of the shells and on a free liquid surface. The non-

penetration conditions are applied to the wetted surfaces. On the free surface we consider dynamical and 

kinematical boundary conditions. The dynamical condition consists in equality of the liquid pressure on 

the free surface to the atmospheric one. The kinematic condition requires that total time derivative of 

the free surface elevation will be equal to zero at any instant. Regarding the potential of velocities, a 

boundary value problem is formulated that is further reduced to an eigenvalue problem. To solve the 

boundary value problem for the Laplace equation, boundary element methods are used in a direct 

formulation. 
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1. INTRODUCTION 

Coaxial shells of revolution, partially filled 

with liquid, are widely used as structural ele-

ments in various engineering applications, for 

example, in the petrochemical and nuclear 

industries. Piping systems can also be modelled 

with coaxial shells between which liquid fluid 

moves [1-3]. The application of analytical 

methods to study the vibrations of such systems 

is possible only for a relatively small class of 

coaxial shells. Therefore, many problems of 

calculating the frequencies and modes of fluid 

oscillations in coaxial shells remain unresolved 

and require the development of modern 

effective numerical methods. In this paper, to 

calculate the frequencies and forms of fluid free 

oscillations in rigid coaxial shells revolution, 

the boundary element method is used. We used 

previously developed methods for solving 

singular integral equations that arise in 

problems on vibrations of shells partially filled 

with fluid [4-6]. In [4], free and forced 

vibrations of elastic shells of revolution with 

liquids are studied; in [5], the case of the action 

of a seismic load is considered; in [6], large 

amplitudes of the external action are 

investigated, which led to the appearance of a 

chaotic nature of oscillations. The aim of this 

work is to generalize the methods of boundary 

integral equations and discrete singularities to 

determine the frequencies and forms of free 

oscillations of a liquid in rigid coaxial shells. 

2. THEORETICAL BASIS 

Two coaxial rigid shells are considered. The 

area between the shells can be completely or 

partially filled with an ideal incompressible 

fluid, Fig. 1. 

It is required to find the frequencies and 

vibration modes of the fluid filling the region 

between the shells. It is assumed that the fluid 

motion is vortex-free. Under these conditions, 

there exists a velocity potential Ф satisfying the 

Laplace equation everywhere inside the region 

occupied by the liquid. The fluid pressure p on 

the wetted surfaces of the shell system is 

determined from the linearized Bernoulli integ-

ral 
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Fig. 1. Coaxial shells containing liquid. 
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Here g  is the acceleration of gravity, l  is 

the density of the fluid, 
0p  is atmospheric pre-

ssure. To solve the Laplace equation, we define 

boundary conditions. On the wetted surfaces of 

the coaxial shells, 1S  and 2S  we require the 

fulfilment of the non-leakage condition 
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On the free surface 0S  we define the kinema-

tic and dynamic conditions. The dynamic con-

dition is the equality of the liquid pressure on 

the free surface to atmospheric pressure 
0p  and 

the kinematic condition is the requirement that 

the total time derivative of the function 

describing the level of free surface rise be equal 

to zero 
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Here, the function   describes the shape of 

the free surface and its position. Note that on 

the free surface the dynamic condition takes the 

following form: 
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We differentiate relation (4) with respect to 

t  and substitute the resulting equality into the 

second of relations (3). We arrive at the follo-

wing boundary value problem with respect to 

the unknown velocity potential   
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For the unique solvability of the boundary 

value problem (5), we require the fulfilment of 

the Neumann condition 
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Under the assumption that the problem of 

small fluid vibrations is considered, the 

unknown velocity potential is presented in the 

form 
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We come to the problem of eigenvalues  
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Here   is the frequency the natural 

oscillations of the liquid in the system of 

coaxial shells. 

3. DATA 

In the region occupied by the liquid and 

bounded by the surfaces 0S , 1S  and 2S  to 

determine the harmonic function  , we use the 

following integral representation [7]: 
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Here 
0P P  is the Cartesian distance 

between the points P  and 0P  located on the 

boundary S  of the region occupied by the 

liquid, n  is the unit vector of the external 

normal to the surface S . 
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It was shown in [8] that, using the integral 

representation (9), the boundary-value problem 

(8) that describes the eigenvalue problem, 

reduces to the following system of singular 

integral equations: 
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In equations (10),   denotes unknown 

values of the potential on the surfaces 1S  and 

2S , and 0  denotes the values of the potential 

on the free surface 0S . 

Further, similarly to [9], we introduce the 

integral operators 
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Using (11), we reduce the boundary-value 

problem (8) to the following operator form: 
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Eliminating the function   from equations 

(12), we obtain the eigenvalue problem in 

operator form, and only the values of the 

potential 0  on the free surface are unknown 
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The eigenvalues and eigenvectors of the 

eigenvalue problem (13) are the frequencies 

and modes of liquid free oscillations in the 

system of coaxial shells. 

Let 
1 2    be the generatrix of the 

composed shell of revolution. In [8-9] the 

following relationships are obtained: 
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Formulas (13) make it possible to reduce 

two-dimensional integrals (11) to one-

dimensional ones calculated over the generatrix 

of the composed shell and along radius of the 

free surface. The singular integral equation 

obtained as a result of applying formulas (13) 

to integrals (11) is solved by the discrete 

singularity method [10]. 

In formulas (3.5), the parameter   means 

the number of nodal diameters (or wave 

number). If 0  , then axisymmetric vibra-

tions are considered. 

4. METHODOLOGY 

The problem of fluid oscillations in a rigid 

spherical shell is considered as a test one. 

Consider a spherical shell of radius 1R   m, 

partially filled with the ideal incompressible 

fluid, with filling level h . A numerical analysis 

was carried out for  0.2 / 1.99h R  , 

1 /h h R . The boundary element method 

(BEM), described above, and the analytical 

approach 11 are applied. When using the 

boundary element method, 150 elements were 

applied along radius of the free surface and 300 

elements along the wetted part of the generatrix. 

Boundary elements with a constant appro-

ximation density are considered, which 

corresponds to the ideology of the discrete 

singularities method 10. A further increase in 

the number of elements did not lead to a 

significant change in the results. Table 1 shows 

the results of calculating the frequencies of 

axisymmetric fluid vibrations (in Hz) using 

these methods. 

 

 

TABLE 1. Frequencies of axisymmetric fluid oscillations in a spherical shell. 

Method Level of filling h, m 

h1=0.2 h1=0.6 h1=1.0 h1=1.8 h1=1.99 

[11] 3.8261 3.6501 3.7451 6.7641 29.050 

BEM 3.8314 3.6510 3.7456 6.7665 29.181 

 

 

TABLE 2.  Frequencies of axisymmetric fluid oscillations in the system of coaxial shells. 

1 2/R R  0.0 0.01 0.2 0.4 0.6 0.9 

   4.247 4.247 4.086 3.785 3.516 3.212 
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5. EXPERIMENTAL RESULTS 

Two cylindrical coaxial shells of different 

radii are considered. Let R1 be radius of the 

inner shell, R2 be radius of the outer shell, and 

H is the level of liquid filling the inner part of 

the shell structure. The calculations are carried 

out using 150 boundary elements with the 

constant approximation of the density along 

radius of the free surface and 300 elements 

along the generatrix of each shell. Table 2 

shows the vibration frequencies for the 

compound system of coaxial cylindrical shells. 

It is assumed that R2 = H =1 m. Various values 

of internal radius are considered. Table 2 shows 

the values of the fluid oscillation frequencies in 

a system of coaxial shells at 1   for different 

R1/R2. 

The modes of fluid oscillations in the system 

of coaxial shells are shown in Fig. 2 and Fig. 3. 

 

 

Fig. 2 The first axisymmetric modes of fluid 

oscillations in the system of coaxial cylindrical 

shells, 0  . 

 

 

Fig. 3 The first non-axisymmetric modes of fluid 

oscillations in the system of coaxial cylindrical 

shells, 1  . 

 

Modes of fluid oscillations shown in Fig. 2 

and Fig. 3 correspond to the following ratio 

R1/R2=0.5.
  

Similarly to the modes of liquid 

vibrations in cylindrical and conical shells 

considered in [9], we see that the modes of the 

free liquid surface oscillations have a character 

inherent in the Bessel functions. The obtained 

forms oscillations are orthogonal and can be 

used in solving problems of fluid forced 

oscillations in coaxial shells, and as a basic 

system functions in the studying nonlinear 

oscillations. 

6. CONCLUSIONS 

The methods of boundary integral equations 

and discrete singularities are further developed 

in solving problems of fluid oscillations in rigid 

coaxial shells, when the free surface the fluid 

has the ring form. The problem determining the 

velocity potential and fluid pressure is reduced 

to solving the system of one-dimensional 

singular equations. An effective numerical 

method for its solving has been developed. The 

algorithm was tested, and the required number 

of boundary elements is established to obtain 

the specified accuracy. 
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