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Abstract. In the current paper we present the basics of generalized electrodynamics. One of the key 

features of this theory is that the solution can be represented as the motion of two particles: the mass-

less photon from standard Maxwell electrodynamics and new massive particle, called dark photon, 

which is a candidate for particle of the dark matter. In the current research we use two quantum me-

chanical approaches, perturbation theory and variational method in order to find the energy contribu-

tion to the ground state of the hydrogen atom coming from the generalized electrodynamics. We will 

compare our results with the experimental data in order to find a lower bound for the mass of the dark 

photon. Our bound, calculated using perturbation theory is 52 MeV, while the variational method pro-

duces much higher result of 28 GeV. 
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1. INTRODUCTION 

Classical Maxwell electrodynamics de-

scribes quite accurately all observed electro-

magnetic phenomena. However, the theory 

encounters difficulties when dealing with 

point charges since it predicts infinite ener-

gies. There are various ways to deal with this 

problem. The most popular one is quantum 

electrodynamics, which uses renormalization 

techniques. Other ways are the generalised 

theories such as Born-Infeld non-linear elec-

trodynamics (Born & Infeld, 1934) and Po-

dolsky generalised electrodynamics (Podolsky 

& Schwed, 1948). The latter is a matter of 

interest in the recent years since it gives pos-

sible candidates for dark matter particles. 

In the current paper we take advantage of 

two quantum-mechanical approaches, namely 

perturbation theory and energy variational 

method, in order to estimate the lower bound 

for the mass of the dark photon. The later can 

be achieved by calculating the energy of the 

ground state of hydrogen atom by the above-

mentioned methods and comparing the results 

with the existing experimental data. Our cal-

culations of the lower bound using perturba-

tion theory shows at least 52 MeV for the 

mass of the dark photon, while the variational 

method, using dimensionless variable, pro-

duces much higher result of 28 GeV. 

 

2. BASICS OF PODOLSKY THEORY 

Generalized electrodynamics, also known 

as Podolsky electrodynamics, is defined by 

the following Lagrangian density (Gratus et 

al., 2015): 

 
2

4

1
,

4

l
F F F F j A   

            (1) 

 

Where j  is the four-current and F  is the 

curvature tensor, defined as  

 

 .F A A         (2) 

 

Here ( , )A A   is the gauge electromagnetic 

potential in natural units, 1c  . The Ein-

stein’s summation convention is also implied. 

The first term in Eq. (1) is the Lagrangian 

density of the Maxwell theory. The last term 

represents the sources of the field. The second 

term was first introduced by F. Bopp in 1940 
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(Bopp, 1940) and independently by B. Po-

dolsky in 1942. Here the parameter l  is a new 

fundamental constant with dimension of 

length. 

Since the standard electrodynamics has 

been experimentally proven with high preci-

sion the contribution of this term and there-

fore l  should be small. 

One can derive the equation of motion by 

the principle of least action: 

 

 
4 , 0.S d x S    (3) 

 

After varying with respect to the gauge field 

A
, we find the following fourth order dif-

ferential equation (in Lorentz gauge): 

 

    
21 , 0.l A j A


        (4) 

 

where 

    is the d’Alambert’s operator.  

Since second order partial differential 

equations are more common in physics, the 

methods for finding their solutions are well-

developed. In order to reduce our problem to 

such equations we will introduce the trans-

formation (Gratus et al., 2015): 

 

 
2 2ˆ , .A A l A A l A          (5) 

 

It is obvious that 

 ˆ ,A A A     (6) 

 

thus the corresponding second order equations 

are 

 ˆ ,A j     (7) 

    

 
2 .A l A j  

     (8) 

 

First of these equations gives the standard 

massless photon from the Maxwell theory. 

The second one describes massive particle 

with Compton wavelength ~ 1/ podl m . This 

particle is called the Podolsky dark photon. 

Eqs. (7) and (8) can be solved in the elec-

trostatic case using Green functions and Fou-

rier transform (Lande and Thomas, 1941). 

This gives the electrostatic potential in the 

form: 

 1 .
r

l
q

e
r


 

  
 

  (9) 

 

From this expression we can verify that in the 

limit, 0r  , one finds /q l  , which  is 

finite. The latter means that the energy of a 

point charge in the whole space is also finite, 

which is the main motivation for considering 

Podolsky electrodynamics. 

 

3. LOWER BOUNDS FOR THE 

MASS OF THE DARK PHOTON 

In order to find a maximum value for the 

parameter l , which means a minimum value 

for the mass of the dark photon, we will con-

sider solutions for the ground state of the hy-

drogen atom with Podolsky’s potential and 

then compare the result to the experimental 

data. Since in this case the Schrödinger equa-

tion cannot be solved exactly we will use two 

approximate  methods – perturbation theory 

and Ritz-Hileras variational method. 

 

3.1 Perturbation theory 
First, we are going to find the ground state 

of the hydrogen atom in the generalized elec-

trodynamics using perturbation theory. The 

problem is essentially reduced to solving the 

time independent Schrödinger equation: 

  

 ˆ
n n nH E     (10) 

 

with the Hamiltonian: 

 

 
0

ˆ ˆ ˆ.H H V    (11) 

 

Here the unperturbed problem is given by 
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0

ˆˆ ,
2

p q
H
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    (12) 
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and the small perturbation potential is the 

Podolsky potential: 

 

2
/ .ˆ r lq

V e
r

   (13) 

 

The solution to Eq. (10) with 
0Ĥ  is well-

known result for the Hydrogen from the non-

relativistic quantum mechanics. It gives the 

energy in the ground state of the Hydrogen 

atom:  

 

2

0 2
13,598287 .

2

q
E eV


      (14) 

 

Now, we are interested in the contribution to 

this energy coming from the perturbation po-

tential (13). One can calculate the first order 

correction of the energy of the ground state, 

which, in this case, is given by 

 

1 0

2

2

0

0

0

16
| ˆ ,

(2 )
|

q
E V

r r




    


  (15) 

 

where, for convenience, we have introduced 

the parameter 1/ l  . We expect that Eq. 

(15) leads to a small contribution. From the 

table bellow one finds that the best agreement 

with the experimental data, 

 

 13,598434 ,expE eV    (16) 

 

is achieved by 13 14,2 10 m   , or 1/l   
142,38 10 .m    

 
TABLE 1.  Some numerical values of the Podolsky 

parameter β and their corresponding ground state 

energies in the perturbation theory. 
-1β, m   

perturbation

0,numericalE , eV   

105,0 10  +49,697 

115,0 10  -11,912 

133,0 10  -13,597 

134,2 10  -13,598 

145,0 10  -13,598 

155,0 10  -13,598 

 

Bigger values for β contribute very little after 

the third digit in the energy of the ground 

state and thus no further digits can agree with 

(16). Using the Compton’s wave length for-

mula one finds the lower bound on the mass 

of the dark photon in Podolsky theory
1
: 

 

 
2

52lowerm MeV
lc




    (17) 

 

As of now all experiments looking for 

massive photons show negative results in the 

MeV band. This results don’t necessarily ex-

clude the existence of a dark photon with 

mass of 52 MeV or heavier. It is possible that 

the existing experiments aren’t enough sensi-

tive to detect such a particle. 

 

3.2 Variational method 
In this subsection we will find a lower 

bound for the mass of the dark photon using 

Ritz-Hileras variational method. We will con-

sider the energy functional given by  

  

 ˆ ˆ| | ,E H H        (18) 

 

where ( , ,...)a b   is some appropriate 

probe wave function and , ,...a b , are some 

parameters to be calculated. The probe wave 

function should be normalised, 

 

 | 1.     (19) 

 

It should also be continuous and quadratic 

integrable. Boundary conditions, symmetries 

and other physical properties should be taken 

also into account. Since the ground state is 

defined as the state with minimal energy, the 

following equations must be valid: 

 

                                                 
1
 The values of the fundamental physical con-

stants and data were taken from NIST (National Insti-

tute of Standards and technology). 
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( , ,...) ( , ,...)
0, 0, ...

E a b E a b

a b

 
 

 
  (20) 

 

Therefore, we have n equations for n parame-

ters. An appropriate function is given by  

 

 .rAe     (21) 

 

From condition (19) one finds 3 /A   . 

Therefore the energy functional (18) is given 

explicitly by 

 

 

2 2 3 2
2

2

4
( ) .

2 (2 )

q
E q

 
 

  
  


  (22) 

 

Here, we will consider the energy functional 

to depend only on the parameter α, and the 

Podolsky parameter β will be related to α via 

Eqs. (20). Thus, the conditions from (20) 

forces us to find the first derivative 

( ) / 0dE d   , which leads to a relation be-

tween α and β, in this case a fourth degree 

algebraic equation, 

 
2

4 3 2

2 2 2 3
2

2 2

3 3

2 4

( 6 )
0.

8 8

q
q

 
  

   


 


  

  (23) 

  

This result was obtained by Cuzinatto, De 

Melo, Medeiros and Pompeia(Cuzinatto et al., 

2011). In the cited paper the authors have 

considered only the terms up to first order in l 

(They have neglected the first two terms in 

the above equation). Which leads to 35.51 

MeV for the lower dark photon mass. 

 Now we are going to examine the full ana-

lytical solutions by taking advantage of the 

numerical and the symbolic capabilities of the 

software package Wolfram Mathematica to 

deal with the roots of the given equation. We 

expect that for some large   one should get 

the known value for  , which for the Hydro-

gen problem in the ground state is (the inverse 

of the Bohr radius): 

  

 10 11,88869748 .3 10 m     (24) 

 

After some numerical experiments with  , 

one finds that only one of the four roots gives 

real and positive values for  . Now, after we 

have identified which root (it has lengthy 

form to wright it here) we can plug it in the 

energy functional (22) to obtain the best 

agreement with the experimental data (16). In 

the table below, we see that the values of the 

energy converge to the experimental one from 

(16) up to three valid digits after the coma for 

increasing values of β.  

 
TABLE 2.  Some numerical values of the Podolsky 

parameter β and their corresponding ground state 

energies in the Ritz-Hileras variational method. 
-1β, m   

variational

0,numericalE , eV   

105,0 10  -10,101 

115,0 10  -13,466 

125,0 10  -13,596 

131,2 10  -13,598 

145,0 10  -13,598 

155,0 10  -13,598 

 

The minimal value of β, still giving visible 

agreement with Eq. (16), is achieved by 

 

 13 11,2 10 .m     (25) 

 

Thus 141,833 10l m  , and the lower bound 

on the mass of the dark photon in this case is 

 

 14,9 .lowerm MeV    (26) 

 

As one can note this bound has the same order 

of magnitude as the one found by perturbation 

theory in Eq. (17).  

     A better idea is to use dimensionless varia-

bles, 

 

2

0 0 0 2
, , ,a r b r r

q
 


     (27) 
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Where 

 
1

0

15.2917721067 1
1

0r


    (28) 

 

is the Bohr radius. In this case Eq. (23) can be 

rewritten in the following form 

 

 

2
4 3 2

2 3

3 3

2 4

( 6)
0.

8 8

b b
a a a

b b b
a

 


  

  (29) 

 

Since now 1a   for the unperturbed ground 

state, we look for such b that gives a as close 

to 1 as possible, which is equivalent to mach-

ing the numerical and the experimental results 

for α (which is the inverse of the Borh’s radi-

us). With some numerical play, shown in the 

table below,  

 
TABLE 3.  Some numerical values of the dimension-

less Podolsky parameter b and the corresponding 

values of the Borh’s radius in the Ritz-Hileras varia-

tional method. 

b   rnumeric

0
, m   

11,0 10  114,940025501 101   
21,0 10  115,285761667 107   
31,0 10  115,291708944 103   
51,0 10  115,291772100 104   
61.2 10  115,291772106 107   
81,0 10  115,291772106 107   

 

one obtains the minimum value 61,2 10b    

to agree best with the Borh’s radius from Eq. 

(28) up to all valid digits after the comma. 

Thus the lower bound on the mass of the dark 

photon in this case 

 

 28 .lowerm GeV    (30) 

 

This value is two orders of magnitude bigger 

than the previously obtained values for the 

lower bound of the mass of the dark photon in 

the Podolsky generalized electrodynamics. 

The latter is due to the numerical calculations 

with dimensionless equations and the compar-

ison of the numerical value to the experi-

mental value of the Borh’s radius instead of 

the energy of the hydrogen in the ground 

state. However, this value on the lower mass 

of the dark photon is closer to the expected 

one as given in (Accioly & Scatena, 2010; 

Buffalo et al., 2014), due to very accurate 

calculations, involving the magnetic moment 

of the electron. In general, one expects that 

the realistic lower bound on the mass of this 

dark particle to be at least as low as the mass 

of the W and Z bozons. 

 

4. CONCLUSIONS 

The generalized electrodynamics gives a 

candidate for dark matter particle, called the 

dark photon. In the current research we have 

calculated several lower bounds on the mass 

of this particle through the energy contribu-

tion to the ground state of the hydrogen atom, 

coming from this theory. We have used two 

methods: perturbation theory, which gives 

lower bound of 52 MeV, and variational 

method, for which this bound is 28 GeV. The 

latter value is as big as the more realistic es-

timations (~ 42 GeV) of the lower bound on 

the mass of the Podolsky dark photon, which 

include relativistic corrections from quantum 

field theory (Accioly & Scatena, 2010; Buffa-

lo et al., 2014). 
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