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Abstract. In this paper we propose a general electrodynamic model for calculating the modes of 

multi-layer anisotropic 2D and 3D waveguides. In the numerical simulations for solving the system of 

private differential equations, the three most frequently used numerical approaches were applied and 

compared at the time of calculation: FD - Finite difference method, Galerkin’s method with a specially 

proposed system of pseudo-orthogonal functions and TMM - method of transformation matrices.  
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1. INTRODUCTION 

Multilayer fibers can transmit multiple times 

more information than one layer waveguides 

and therefore are goal of many studies. 

Multilayer waveguides are made up of several 

layers, each layer having a different refractive 

index and dielectric permeability. Several 

different signals can be transmitted over a long 

distance with minimal loss. 

In modelling, we assume that the radiation is 

presented as an electromagnetic (EM) wave, 

and the mediums of the layers in the form of a 

physical carrier characterized by a certain set of 

optical parameters. This consideration is valid 

in more than 98% of the practical application 

of waveguides. Maxwell's equations describe 

the wave propagation well in these cases. 

In modelling 2D multilayer waveguides (the 

EM wave propagates along the Oz axis), when 

the media of each "j-th" layer is presented by 

diagonal tensors of permittivity    and    

permeability, the following equations for 

transverse electrical (TE) and transverse 

magnetic (TM) modes are used: 

For TE mods (0, ( , ),0)yjE E x z : 
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For TM mods (0, ( , ),0)yjH H x z : 
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Here   is the frequency of radiation,   is 

the search eigenvalue, Е  and H  are eigen-

vector functions, representing configurations of 

the electric and magnetic fields, corresponding 

to the eigenvalue   , 
0  is a permittivity and 

0  is a permeability of free space. More 

detailed information about the 2D model and 

the solve of equations (1) - (4) can be found in 

(Chengkun Chen et al., 2000). 

With full 3D anisotropy for each "j-th" 

layer, the media of which is described with a 

non-diagonal permittivity tensor, the EM wave 

propagation is described by Maxwell's 

complete system of equations. According to the 

results in paper (Ivanov I., 2015) it was proved 

that clear TE and TM modes no exist.  
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This paper studies and compares the 

applicability and effectiveness of the most 

commonly used methods for calculating modes 

of 2D and 3D multilayer waveguides. These 

methods are: TMM – transformation matrix 

method, FD – finite difference method and 

Galerkin’s method. 

 

2. NUMERICAL METHODS 

2.1 Transformation Matrices Method 

It is assumed that in each “j-th” layer the 

solution is a smooth function of the type: 

 
2 2 2

0( ) exp ( )( )j j jx C k n x x      ,         (5) 

 

where 
2 ( , )j jn x y is the refractive index, 

jd is 

the thickness of “j-th” layer , 
1j jx x x   . 

Let 
j =1 for ТЕ, 

2

j jn  for ТМ modes. 

Let  2 2 2

0j jk k n   . Then for the unknown 

function ( )j jx  and its derivative, 
jd
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
 

we have: 
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where transformation matrix 
jT has the form: 
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The total matrix of the transformation is 

obtained as a "n" multiplication of the matrices 

for each layer. 
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For the whole waveguide structure we have: 
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The dispersion equation is the transcendent  

equation of the type: 
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2.2 Finite Difference Method 

The FD method is a method approximating 

the value of the desired function in a given 

node by a linear (nonlinear) combination of 

values in selected surrounding nodes. Its main 

idea is based on the representation of 

derivatives by finite differences, using different 

differential schemes. The more nodes enter the 

differential template, the better the precision of 

convergence. In this way, the solution of the 

differential equations system is replaced by 

solving an algebraic system. Another important 

advantage is that the matrix derived from the 

coefficients of the algebraic system has a band 

structure.  

 

2.3 Galerkin’s Method 

The numerical method of Galerkin is used 

with a finite number of dimensions Hilbert 

space 
nH  and the approximate solution of 

equation Âu f (operator Â  is normalized 

and limited) is searched by a finite number of 

orthogonal functions  
1

n

i i



 as: 
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А linear algebraic system is obtained to 

determine the coefficients 
ka . 
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To determine the spectrum f u , the 

homogeneous system needs to be solved: 
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For a solution it is necessary that 
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It is usually difficult to select classical basic 

functions to meet boundary conditions and 

complex geometry at the boundaries of the 

areas under consideration, and to provide 

consistent convergence across the research 

area. This necessitates the use of pseudo-

orthogonal functions with a local carrier. 

The matrix of the algebraic system often has 

a sparse and band structure. 

 

3. NUMERICAL EXAMPLES AND 

RESULTS 

The numerical experiments were realized on 

a computer system with the following 

configuration: PC Lenovo, Intel Core2 Duo 

CPU T8400 2.26 GHz, 8 GB DDR3 RAM, 

HDD -160 GB / 5400.  

For TMM Eigenvalues and Eigenvectors are 

searched using the Muller's method. (Newton's 

iteration method with 3-point interpolation). 

After FD and Galerkin discretization 

eigenvalues are searched using the dynamic 

Shifted Inverse Power method.  

The comparison of the methods is made 

according to the following parameters:  

а) Applicability of the method. This includes 

the possibilities of finding propagation 

constants and their respective ЕМ wave 

configurations. Particular attention will be paid 

to the calculation of closely related 

eigenvalues.  

b) Efficiency of the method. This includes 

the complexity of the algorithm, the 

approximate number of operations, the 

calculation time, the number of iterations 

needed, the number of variables needed, and so 

on.  

3.1 Calculating 2D Waveguides 

The following types of multilayer 

waveguides were computed: 

a) Dielectric layers only. Results are shown 

in Table 1. 

b) A combination of metal, dielectric and 

semiconductor layers. Results are shown in 

Table 2. 

c) ARROW waveguides and other multi-

layered structures with closest to value 

distribution constants. Results are shown in 

Table 3 and in Table 4.  

3.2 Calculating 3D Waveguides 

Here we apply the Finite Difference Method 

(FD) and the Galerkin method for calculating 

modes of nematic liquid crystal (LC) 5CB 

anisotropic channel waveguide, proposed and 

calculated using a pseudospectral method in 

(Chia-Chien Huang, 2010). In this case, the 

application of the TMM method is impossible. 

Results are shown in Table 5. 

 

  
TABLE 1.  Comparison of methods for calculate TE modes for waveguide structure with 6 dielectric 

layers proposed in (Rzhanov et al., 2010). 

 

Method 

Time to Calculate All 

Eigenvalues and All 

Eigenvectors  

Minimum Number of 

Divisions of Computer Area 

for Accuracy 0.00001 

Transformation Matrix Method 3.3561 6 

Finite Difference Method 1.1862 512 

Galerkin’s Method 1.8311 512 
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TABLE 2.  Comparison of methods for calculate modes for waveguide structure with dielectric, 

metal and semiconductor layers proposed in (Offersgaard J. F., 1995). 

 

Method 

Time to Calculate All 

Eigenvalues and All 

Eigenvectors  

Minimum Number of 

Divisions of Computer Area 

for Accuracy 0.00001 

Transformation Matrix Method 4.1632 6 

Finite Difference Method 5.8311 4096 

Galerkin’s Method 9.1632 4096 

 

 
TABLE 3.  Comparison of methods for calculate modes for 9 layers ARROW waveguide structure 

proposed in (Chengkun Chen et al., 2000). 

 

Method 

Time to Calculate All 

Eigenvalues and All 

Eigenvectors  

Minimum Number of 

Divisions of Computer Area 

for Accuracy 0.00001 

Transformation Matrix Method 218.233 11 

Finite Difference Method 121.334 4096 

Galerkin’s Method 123.093 4096 

 

 
TABLE 4.  Comparison of methods for calculate modes for 19 layers GaxAl1-xAs-AlAs waveguide 

structure that generates 9 very close TE-effective indexes, proposed in (Chengkun Chen et al., 

2000). 

 

Method 

Time to Calculate All 

Eigenvalues and All 

Eigenvectors  

Minimum Number of 

Divisions of Computer Area 

for Accuracy 0.00001 

Transformation Matrix Method 96.5671 21 

Finite Difference Method 59.7581 4096 

Galerkin’s Method 61.3833 4096 

 

 
TABLE 5.  Comparison of numerical methods for calculate the first 7 modes at twist angle (0

0
, 30

0
, 

45
0
,60

0
, 90

0
) for nematic LC (5CB) anisotropic channel waveguide that generates very close effective 

indexes, proposed in (Chia-Chien Huang, 2010). 

 

Method 

Time to Calculate All 

Eigenvalues and All 

Eigenvectors  

Minimum Number of 

Divisions of Computer Area 

for Accuracy 0.01 

Transformation Matrix Method   

Finite Difference Method 1768.35 320 by 320 

Galerkin’s Method 1832.11 320 by 320 

 

4. CONCLUSIONS 

The numerical experiments we have done 

lead to the following conclusions:  

1) The Galerkin and FD methods are 

applicable for calculating modes of all 

types of 2D and 3D waveguides.  

2) The TMM method is applicable only to 

2D structures or to a special type of 3D 

structures with a diagonal tensor of 

pemittivity.  

3) For 2D waveguides with dielectric layers, 

the FD method was most effective, 

followed by the Galerkin method.  

4) For 2D waveguides with a combination of 

a few number of metal, semiconductor 
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and dielectric layers, the most efficient 

method is TMM.  

5) For ARROW waveguides and 2D 

structures with a large number of layers, 

the FD and Galеrkin methods are almost 

equivalent in efficiency, the application of 

TMM leads to loss of precision and the 

appearance of redundant roots.  

6) For a 3D waveguide channel with full 

anisotropy, the FD and Galerkin methods 

show close results, assuming that 

Galerkin's method is more resilient when 

changing the number of divisions of the 

computing area. 
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